perm filename MANNA.PR1[258,JMC] blob
sn#143787 filedate 1975-02-05 generic text, type T, neo UTF8
1 (¬(0≥SUCC0)∧∀N.(¬(N≥SUCCN)⊃¬(SUCCN≥SUCCSUCCN)))⊃∀N.¬(N≥SUCCN) ∧I (NIL)
2 ¬(SUCC0=0) ∀E NIL 0
3 0≥SUCC0⊃SUCC0=0 ∀E NIL SUCC0
4 SUCCN≥SUCCSUCCN≡PREDSUCCN≥PREDSUCCSUCCN ∀E NIL SUCCN , SUCCSUCCN
5 PREDSUCCN=N ∀E NIL N
6 PREDSUCCSUCCN=SUCCN ∀E NIL SUCCN
7 SUCCN≥SUCCSUCCN≡N≥PREDSUCCSUCCN SUBSTR 5 IN 4
8 SUCCN≥SUCCSUCCN≡N≥SUCCN SUBSTR 6 IN 7
9 ¬(N≥SUCCN)⊃¬(SUCCN≥SUCCSUCCN) TAUT
10 ∀N.(¬(N≥SUCCN)⊃¬(SUCCN≥SUCCSUCCN)) ∀I 9 N ← N
11 ∀N.¬(N≥SUCCN) TAUT
12 ((¬Q(0,0)∨(Q(0,M*0)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))∧∀N.((¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(P%
REDI,K+M))))⊃(¬Q(SUCCN,0)∨(Q(0,M*SUCCN)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))))⊃∀N.(¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬%
(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))) ∧I (NIL)
13 (M*0)=0 ∀E NIL M
14 ∀N.((¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))⊃(¬Q(SUCCN,0)∨(Q(0,M*SUCCN)∨¬∀I K.((¬(I=0)∧Q(I,%
K))⊃Q(PREDI,K+M)))))⊃∀N.(¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))) TAUTEQ
15 ∀N.((Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*N)) (15) ASSUME
16 (Q(SUCCN,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*SUCCN) (15) ∀E 15 SUCCN
17 (¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))⊃(¬Q(SUCCN,0)∨(Q(0,M*SUCCN)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃%
Q(PREDI,K+M)))) (15) TAUT
18 ∀N.((¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))⊃(¬Q(SUCCN,0)∨(Q(0,M*SUCCN)∨¬∀I K.((¬(I=0)∧Q(I,%
K))⊃Q(PREDI,K+M))))) (15) ∀I 17 N ← N
19 ∀N.((Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*N))⊃∀N.((¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(P%
REDI,K+M))))⊃(¬Q(SUCCN,0)∨(Q(0,M*SUCCN)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M))))) ⊃I 15 18
20 ∀N.((Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*N))⊃∀N.(¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PR%
EDI,K+M)))) TAUT
21 Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)) (21) ASSUME
22 Q(N,0) (21) TAUT
23 ∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)) (21) TAUT
24 ((N≥0⊃Q(N-0,M*0))∧∀N1.((N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(N-SUCCN1,M*SUCCN1))))⊃∀N1.(N≥N1⊃Q(N-N1,M*N1)) ∧I (%
NIL)
25 (N-0)=N ∀E NIL N
26 (M*0)=0 ∀E NIL M
27 ∀N1.((N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(N-SUCCN1,M*SUCCN1)))⊃∀N1.(N≥N1⊃Q(N-N1,M*N1)) (21) TAUTEQ
28 N≥N1⊃Q(N-N1,M*N1) (28) ASSUME
29 NATNUM(N-N1)⊃((¬((N-N1)=0)∧Q(N-N1,M*N1))⊃Q(PRED(N-N1),(M*N1)+M)) (21) ∀E 23 N-N1 , M*N1
30 N≥SUCCN1 (30) ASSUME
31 N≥SUCCN1⊃N≥N1 ∀E NIL N , N1
32 N≥SUCCN1⊃¬((N-N1)=0) ∀E NIL N , N1
33 N≥N1⊃NATNUM(N-N1) ∀E NIL N , N1
34 Q(PRED(N-N1),(M*N1)+M) (21 28 30) TAUT
35 N≥SUCCN1⊃Q(PRED(N-N1),(M*N1)+M) (21 28) ⊃I 30 34
36 (N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(PRED(N-N1),(M*N1)+M)) (21) ⊃I 28 35
37 (M*SUCCN1)=((M*N1)+M) ∀E NIL M , N1
38 (N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(PRED(N-N1),M*SUCCN1)) (21) SUBST 37 IN 36
39 (N-SUCCN1)=PRED(N-N1) ∀E NIL N , N1
40 (N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(N-SUCCN1,M*SUCCN1)) (21) SUBST 39 IN 38
41 ∀N1.((N≥N1⊃Q(N-N1,M*N1))⊃(N≥SUCCN1⊃Q(N-SUCCN1,M*SUCCN1))) (21) ∀I 40 N1 ← N1
42 ∀N1.(N≥N1⊃Q(N-N1,M*N1)) (21) ⊃E 27 41
43 N≥N⊃Q(N-N,M*N) (21) ∀E 42 N
44 (N-N)=0 ∀E NIL N
45 N≥N⊃Q(0,M*N) (21) SUBSTR 44 IN 43
46 N≥N ∀E NIL N
47 Q(0,M*N) (21) ⊃E 46 45
48 (Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*N) ⊃I 21 47
49 ∀N.((Q(N,0)∧∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))⊃Q(0,M*N)) ∀I 48 N ← N
50 ∀N.(¬Q(N,0)∨(Q(0,M*N)∨¬∀I K.((¬(I=0)∧Q(I,K))⊃Q(PREDI,K+M)))) ⊃E 49 20